Minimally Invasive Surgery for Aortic Valve Replacement

Aims of MIS

Minimally invasive surgery (MIS) for aortic valve replacement (AVR) aims to reduce "invasiveness" of surgery, while maintaining the same efficacy and safety of a conventional approach.¹ Compared to full sternotomy (FS), MIS for AVR aims to:

- As MIS is less invasive, it is particularly advantageous in patients with comorbidities such as obesity⁸ and COPD⁹, as it is important that these patients maintain chest wall continuity
- In recent years there has been a significant increase in patient demand for MIS⁹

Safety of MIS

- Clinical studies demonstrate comparable safety data for MIS and FS^{7,10,11}
- MIS shows superior safety results when considering:
 - Mortality
 - In a recent study of 954 propensity-matched patients, in-hospital mortality was reduced with MIS (0.4%) compared to FS (2.3%; p=0.013)⁷
 - MIS is also related to an increase in long-term survival in comparison to FS (Figure 1)⁷
 - Blood loss
 - A meta-analysis involving 4,586 patients showed an average of 79 ml less blood loss with MIS compared to FS¹¹
 - One study showed transfusions were needed in 20% of MIS compared to 27.9% of FS patients (p≤0.003)¹²

Figure 1: The long-term survival of 954 propensity-matched patients who underwent MIS for AVR⁷

Minimally invasive surgery for aortic valve replacement aims to reduce "invasiveness" of surgery, while maintaining the same efficacy and safety of a conventional approach¹

Patient timeline for minimally invasive surgery (MIS) compared to full sternotomy (FS)^{13,14}

Duration of ventilation mean difference = -1.56 hours (95% CI-3.48,0.36), p=0.11¹³ ICU stay mean difference = -0.57 days (-0.64,0.42), p=0.003¹³ Hospital ward stay mean difference = -2.03 days (-4.12,0.05), p=0.06¹³ Recovery time FS = 6-8 weeks compared with MIS = 1-4 weeks¹⁴

The above graph is a visual representation of the data referenced, with the longest time found in the literature for each point depicted. This does not represent a strict timeline for recovery from MIS and FS.

Consequently, patients who undergo MIS are likely to return to normal activities faster than people who undergo FS.^{13,14}

Key Considerations of MIS

- MIS is more complex and technically demanding than FS due to¹:
 - Deeper operative field
 - Limited working space for exposure and implantation of the valve
 - New equipment and methods
- MIS is associated with longer cross clamp times and longer cardiopulmonary bypass times, which can lead to increased mortality and complications^{15,16}
- MIS for AVR is associated with a learning curve¹¹
- Rapid deployment valves help to simplify the procedure of MIS. By decreasing the cross clamp and coronary bypass times, they help to overcome the limitations of the technique^{5,11,17,18}

Benefits of MIS

Reduced ventilation time^{1,5}

Reduced post-operative blood loss¹

Lower mortality⁷

May reduce risk of complications^{1,4}

Improved patient satisfaction²

Multiple benefits for patients, surgeons and hospitals

Faster return to normal activities^{2,14}

Shorter hospital stay^{6,11,13} Improved cosmesis^{2,3}

Reduced pain^{1,2,6}

Patient

Surgical team

May reduce cost due to lower complications^{10,19} Reduced length of stay cost^{3,10,20,21} May increase hospital revenue²²

Hospital

References:

- 1. Glauber M et al, Ann Cardiothorac Surg. 2015;4:26-32
- 2. Cohn LH et al, Annals of Surgery. 1997;226:421-28
- 3. Cosgrove D et al, Ann Thorac Surg. 1998;65:1535-9
- 4. Doll N et al, Ann Thorac Surg 2002;74:S1318-22
- 5. Glauber M et al, J Thorac Cardiovasc Surg. 2013;145:1222-6
- 6. Phan K et al, Ann Thorac Surg. 2014;98:1499–511
- 7. Merk D et al, Eur J Cardiothoracic Surg. 2015;47:11–17
- 8. Santana O et al, Ann Thorac Surg. 2011;91:406–10
- 9. Furukawa N et al, Eur J Cardiothorac Surg. 2014;46: 221–7
- 10. Ghanta RK et al, J Thorac Cardiovasc Surg. 2015;149:1060–5
- 10. Grand Hitter al, o Thorac Cardiovasc Surg. 2015,149.1000-5
- 11. Brown M et al, J Thorac Cardiovasc Surg. 2009;137:670–9
- 12. Neely RC et al, Ann Cardiothorac Surg. 2015;4:38-48

- 13. Khoshbin E et al, BMJ Open. 2011;1:e000266
- 14. Cleveland Clinic. Minimally Invasive Heart Surgery. Available at: http://my.clevelandclinic.org/services/heart/services/mini_invasivehs
- 15. Al-Sarraf N et al, Int J of Surgery. 2011;9:104–9
- 16. Salis S et al, J Cardiothorac Vasc Anesth. 2008;22:814-22
- 17. Borger M et al, Ann Thorac Surg. 2015;99:17-25
- 18. Pollari F et al, Ann Thorac Surg. 2014;98:611-7
- 19. Abraham I et al, Transfusion. 2012;52:1983-8
- 20. Tan SS et al, Value Health. 2012;15:81-6
- 21. WHO. Country Specific Unit Costs. Available at: http://www.who.int/choice/ country/country_specific/en/
- 22. Nguyen TC et al, Ann Cardiothorac Surg. 2015;4:178-81

Edwards, Edwards Lifesciences, and the stylized E logo are trademarks or service marks of Edwards Lifesciences Corporation. All other trademarks are the property of their respective owners. © 2015 Edwards Lifesciences Corporation. All rights reserved. E6620/12-16/HVT

Edwards Lifesciences | edwards.com Route de l'Etraz 70 | 1260 Nyon, Switzerland USA | Japan | China | Brazil | Australia | India

